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Consider ‘§olutions (G(x,€),H(x,€)) of“;hé von Kirmidn equations for the
swirling flow hatween two rotating coaxial disks
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(1.1) etV &+ HH''' + GG' = O
and L ) fon

. Q.J\"w\'_'v\‘ f“x\ ‘/0,'3\ o "
(1.2) EG" + HG' - H'G =0 -

B .

with boundary conditions :
(1.3) H(0,€) = H'(0,€) = H(1,€) = H'(1,€) = O
(1.4) G(0,€) = s, G(1,¢) =1, s €1. .

Vv
In this work we establish the existence of solutions for € small enough. 1In
fact, if n 1is a given positive integer with sign s = (<1)™  then there is -
for € > 0 sufficiently small - a solution with the additional property:
G(x,€) has n interior zeros. If n > 1! there are at least two such
solutions. If s = 0 there is at _least one such solution for every positive
integer n. The asymptotic Yshape™-of these solutions is described.‘

'

AMS (MOS) Subject Classifications: 34B15, 34E15, 35010

Key Words: Ordinary differential equations, Rotating fluids, Similarity
solutions, Asymptotic benavior, Existence, Nonuniqueness

Work Unit Number 1 (Applied Analysis)
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SIGNIFICANCE AND EXPLANATION

Under appropriate conditions the steady-state flow of fluid bhetween two
planes rotating abhout a common axis perpendicular to them may he described by
two functions H(x,€), G(x,€) which satisfy the coupled system of ordinary
differential equations

erV + HH''' 4 GG’ = 0
EG" + HG' - H'G =0 .
The quantity € > 0 is related to the kinematic viscosity and %-= R is

usually called the Reynolds number.

These equations have received gquite a bit of attention. First of all,
people who are truly interested in the phenomena modeled hy these equations,
e.q. fluid dynamicists, are interested in this problem. However, as these
equations have been studied by a variety of mathematical methods, they have
taken on an independent interest. The major methods employed have been (i)}
Matched Asymptotic Expansions and (ii) Numerical Computations. 1In both
approaches technical problems have appeared. There may be "turning points,"
i.e. points at which H(x,€) = 0. Such points require special and delicate
analysis within the theory of (i). As numerical problems, these equations are
"stiff" - precisely because € is small. The occurrence of "turning points"

only makes computation more difficult.

For these reasons, these equations have become "test" problems for
methods of "matching in the presence of turning points" and "stiff O.D.E.
solvers."” However, when one has "test problems,"” one needs to know the

answers. (Infortunately here the answers are largely unknown.

In this report we estahlish the existence of a multiplicity of solutions
of small € > 0. 1In addition we qive a complete asymptotic description nf the
shape and structure of these solutions. These results confirm the formal
asymptotic work of Watts [24] and qo much further. These results should he

useful in checkina numerical studies of this prohlem.

The responcihility for the wordina and views expressed in this Adescriptive
summary lies with MRC, and not with the authors of this report.
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Heinz-0Otto Kreiss
Introduction
In 1921 T. von K&rmén [5] developed the similarity equations for axi-symmetric,

incompressible, steady flow - "swirling flow". Let (qz,qe,qx) be the coordinates of

velocity in cylindrical coordinates, (r,8,x). von Kirman assumed that there is a function

H(x,€&) such that

q, = -H(x,€) .
Then, as a direct consequence of the steady state Navier-Stokes equations one finds that
(see (1], (5]) there is a function G(x,€) so that the velocity components are described by

q, =3 H'(x,€), g = 5 G(x.€) .

The functions <(G{(x,€),H(x,€)) satisfy the equations

(1.1) ed’ + HH''' +GG' =0,

(1.2) EG" + HG' ~ H'G =0 .
The quantity € > 0 is related to the bulk viscosity. Equation (1.1) can be integrated to

yield

2

(1.3) €H''" + HH" + 1 G” - % (H')2 =y

2
where u 1is a constant of integration,
In the case originally studied by von Kirmdn, the flow above a single disk, we have a
problem on the infinite interval ([0,®]) and the constant of integration is known, i.e.,
o= % a2

where R = G(=,€).

.will also appear as Computer Sciences Department Report #466.
1California Institute of Technology, Pasadena, CA.

2University of Wisconsin~Madison, Madison, WI,

Sponsored by the United States Army under Contract No., DAAG29-80~C-0041, and
by the Office ot Naval Research under Contract No. N00014-76-C-0341, ID number
NR 044-356.
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If we consider the flow between two planes, x = 0, x = 1 rotating with constant

angular velocities 00/2, ﬂ'/z, then the quantity U = u(c) is unknown. This latter case
was first studied by Batchelor {1) and Stewartson ([22] who gave conflicting arquments and

conjectures., In this case the boundary conditions are

v e e e S <o+ e

(1.4a) H(0,€) = H(1,€) = O, [no penetration)
(1.4b) H'(0,€) = H'(1,€) = O, [no slip)
(1.4) G(o,€) =8y, G(1,€) =8, [8] + |8} %0,

Many authors have studied this problem. Numerical calculations have been carried out
; by Lance and Rogers [9], C. E, Pearson {15], D. Greenspan (3], D. Schultz and D. Greenspan

[19), L. O. Wilson and N. L. Schryer [26], G. L. Mellor, P. J. Chapple and V. K. Stokes

{12}, N. D, Nguyen, J. P. Ribault and P, Florent [13]), S. M, Roberts and J. S. Shipman
(18), H. B, Keller and R. K~H. Szeto ([6). Formal matched asymptotic expansion methods have
been used by A. Watts [24] (who also did numerical calculations), K. X. Tam [23},

H. Rasmussen [17), B, J. Matkowsky and W. L. Siegmann [11). Undoubtably many others have

also worked on this problem.

Nevertheless, the basic questions of "existence" and "uniqueness” have remained
unanswered. S. P, Hastings [4) and A, R, Elcrat [2) have proven existence and uniqueness
for large €. Their arguments are essentially a perturbation about € = =, J, B, McLeod
and S. V. Parter (10) considered the special case where “0 - —91 # 0, They have shown the
existence of a solution for all € > 0 and; for these solutions, they gave a complete
discussion of the asymptotic behavior. These golutions are bounded. In fact

H(x,€) = o(7e)
G(x,€) = O(1)

There have been no results on the number of solutions. In (21} J. Serrin referred to

computational results of C. E, Pearson in the case ﬂo = -521 # O, Pearson's computations

indicated the existence of solutions which are not anti-symmetric about x = - -;-. Thus,

since (G(1 - x,€),-H(1 - x,€)) is a solution whenever (G(x,€),H(x,€)) is a solution, thesge

computational results lead one to conjecture that there are several solutions. Indeed much

of the computational work since Pearson's early paper seems to confirm this conjecture.

~2a-
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Incroduction

In 1921 T, von Kirmén [5) developed the similarity equations for axi-symmetric,

incompressible, steady flow - "gwirling flow", Let (qr.qe,qx) be the coordinates of

velocity in cylindrical coordinates, (r,9,x), von Ki&rmin assumed that there is a function

H(x,€) such that

. et e —— iy ot e

9y = -H(x,€) .

Then, as a direct consequence of the steady state Navier-Stokes equations one finds that

: (see (1], (5]) there is a function G(x,€) so that the velocity components are described by ?

r x
9, =3 H'(x,e), 9 =3 G(x,€) .

The functions (G(x,€),H(x,€)) satisfy the eguations

(1.1) en’Y 4+ HH''' + GG =0,

(1.2) €EG" + HG' - H'G = 0 .

The quantity € > 0 is related to the bulk viscosity. Equation (1.1) can be integrated to

yield
(1.3) 8H"'+HH"+%62--;-(H')2=U

where U 1is a constant of integration.
In the case originally studied by von Kdrmin, the flow above a single disk, we have a
problem on the infinite interval 1{0,®) and the constant of integration is known, i.e.,

o2

1
H = 7 Ve

where 1 = G(»,£),

.Hill also appear as Computer Sciences Department Report #466,
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1f we consider the flow between two planes, x = 0, x = 1 rotating with constant
angular velocities no/z, 01/2, then the quantity ¥ = u(€) ie unknown. This latter case
was first studied by Batchelor (1] and Stewartson [22] who gave conflicting arguments and

conjectures. In this case the boundary conditions are

(t.4a) H(0,€) = H(1,€) = O, [no penetration]
(1. 4) H'(0,€) = H'(1,¢€) = O, [no slip]}
(l.4c) G(o,e) =8y, G(1,e) =@, 8]+ [8]%0.

Many authors have studied this problem. Numerical calculations have been carried out
by Lance and Rogers (9], C. E. Pearson [15), D. Greenspan (3], D. Schultz and D. Greenspan
[19], L. O, Wilson and N. L. Schryer [26], G, L. Mellor, P, J. Chapple and V. K. Stokes
{12], N. D. Nguyen, J. P. Ribault and P. Florent [13], S. M. Roberts and J. S. Shipman
(18], H. B, Keller and R. K-H. Szeto (6]. Formal matched asymptotic expansion methods have
been used by A. Watts [24) (who also did numerical calculations), K. X. Tam [23],

H. Rasmussen [17], B. J. Matkowsky and W. L. Siegmann [11]. Undoubtably many others have
also worked on this problem.

Nevertheless, the basic questions of “existence®™ and "uniqueness" have remained
unanswered. S. P. Hastings (4] and A. R. Elcrat [2] have proven existence and uniqueness
for large €. Their arguments are essentially a perturbation about € = =, J, B, Mcleod
and S, V. Parter [10) considered the special case where no - -a1 # 0. They have shown the
existence of a solution for all € > 0 and; for these solutions, they gave a complete
discussion of the asymptotic behavior. These solutions are bounded. In fact

H(x,€) = O(7€)
G(x,€) = 0(1)

There have been no results on the number of solutions. 1In [21] J. Serrin referred to
computational results of C. E. Pearson in the case 00 - -91 # 0, Pearson's computations
indicated the existence of solutions which are not anti-symmetric about x = - %. Thus,
since (G(1 - x,€),-H(1 - x,€)) is a solution whenever (G(x,€},H(x,€)) is a solution, these
computational results lead one to conjecture that there are several solutions. Indeed much

of the computational work since Pearson's early paper seems to confirm this coujecture.
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In [B] we considered the asymptotic behavior of families of solutions (G,H) which
gatisfy the bounds:
(1.5a) |H(x,e)| + |H'(x,€)| + |G(x,e)| € B,
There is a point x4, 0 < x5 < 1 and a constant 8§, 0 < § < B such that
(1.5b) ]H(xo,s)] > 5,
Interestingly enough we discovered that there are no such families. Moreover, a careful
analysis of our discussion makes it clear that the source of the difficulty is the
condition that
Lim {lnol + |n1|J 0.
E+Q
Furthermore, the physical boundary conditions (1.4a), (1.4b) together with the conditions
(1.5a), (1.5b) imply that (in the limit as € + 0+) the function #(x,€) may not have
nodal zeros, i.e.
{(1.6) Lim H(x,€) may not change sign .
Therefore we turned to the question of the existence of "pathological" solutions
(G,H) which satisfy the differential equations (1.1), (1.2), the bounds (1.5a), (1.5b),

the boundary condition (1.4a), (1.4b) and also satisfy (1.4c) with

(1.7) |no(e)l + |n1(e)| # 0, 0<ce¢
(1. M) Lim (|n°(e)| +|9,e) |} =0
£+0

Moreover, (1.6) implies these solutions should be essentially "positive” in the sense that

H(x) = Lim H(x,€) > 0 .

Remark: The hypothesis (1.5a), (1.5b) implies that - after the extraction of a subsequence

if necessary, the functions H(x,E) are convergent to a non-trivial limit function.

The results of [8) imply that H(x) must then have a special form. That is, there
are n numbers, 00,01,...,on, with
(1.8a) 0= 00 < 01 < **° an =1,

And, on the interval

[0.10-* ]I ] ‘0,1,.-.,"-1

-3-




3 we have

| - H, .

; (1.8b) H(x) = “2J (1 —cos 1.{x =-90,)}] , ‘ :

{ 2 3 3 _

) |

{ :

! where

b -1

. = 2%(0, - g, .
(1.8¢) Tj ( 341 J)

In this paper we prove that if € > 0 is small enough there are such pathological
solutions, Moreover, such solutions exist for all n, n = 1,2,... &
, The main result is
‘ Theorem I: Let n 2 1 be a given integer, let 9gs9y be given real numbers with
(1.9) 9, *# 0, sign g, = (=)t .
Then there is an € > 0 and an L = L(E) such that, for all € & (0,€] there is a pair
of functions (G(x,€),H(x,€)) defined on the interval [0,L(€)] which satisfy the

differential equations (1.1), (1.2) on that interval. In addition these functions satisfy

the boundary conditions

(1.10a) H(0,€) = H(L(€),e) = 0 , '
g (1.10b) H'(0,€) = H'(L(E),€) = 0,
| (1.10c) 6(0,6) = g,6/3, a(ute),e) = g%/,

The functions (G(x,€),H(x,€)) also satisfy (1.5a), (1.5b). The function H(x,€) has

n "humps®. To be precise, there are exactl, n + 1 numbers,

0= oo < 01(5) < **0 ¢ on_1(e) < cn(e) = L(€)

at which H(x,€) has (relative) minima, that is

(1.11) u-(oj(e),e) = 0, H‘(Oj(E),C) >0 .
Moreover,
H(o (€),0) xe'/3
and, between the oj(e), H(x,€) 1is essentially positive. In fact, H(x,€) 1is essentially
given by (1.8b) while the function G(x,€) has the fora

(1.12a) Gix,€) = (-1)]TjH(x,€). 9,(6) < x < o (e) .

1

J

3

!

1

;
N




where

(1.12b) T, =

y J = 0,1,00e,n =1,

Finally, there is a constant T < 0 such that

(1.13) Lim 1,(€) = |“r'|3'1 .
e+

Remark: The characterization of G(x,€) given by (1.2a), (1.2b) can be made more precise.

Case 1: a, »0.

In this case G(x,€) has exactly n interior zeros, say Y1,Y2,...,Yn, and

(1.14a) Y <oy 5 = 1,2,000,n
(1.14b) o -, = o(e'/3y, 5 = 1,2,000,m »
Case 2: dqg < 0 .

In this case G(x,€) has exactly {(n + 1) zeros, say YO,Y1.T?....,Yn and (1.14a),
(1.14b) hold. Moreover

/3

1
(1.14c) g =0<Y0, Y. - 0_ = 0(¢€ ) .

0 0 0
Once one has proven this result we obtain the patholoaical solutions on the interval
[0,1] by taking
(1.15a) X = x/L(E), e' = g/L(e) ,
(1.15h) HIX,€') = H(X,€),  G(x,€') = L(E)G(x,E) .

The functions (E,;) satisfy (1.1}, (1.2) - with x replaced by ; and € replaced hy

€'. In addition these functions satisfy the boundary conditions (1.4a), (1.4h), (1.4c)

with
31,2

R, = 2tey = q 1> en 3,

Q= (e) = q1’3en?3,

17 1
Pinally, if we get

173
~ g €
(1.16a) € = N = I3
l?f1(e ' |Q1L5/3|
(1.160) q%,8) = ) W(x.E'Y = 0(E2)
. X TETTETTT . ’
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-~ A~ 1 ~ o~ ~=2
(1.16¢c) G(x,€) = ﬁTTETT G(x,€') = O(e )
we obtain a solution of (1.1), (1.,2), (1.4a), {1.4b), (1.4c) with € replaced by E, x
replaced by ;, with ﬂo replaced by 50, and 91 replaced by 51 where
ﬂo = go/gl, 821 =1,

For completeness sake we formulate this last result as

Theorem II: Let n » 1 be an integer. Let s be a given real number. Then for €

small enough there is a solution (G,H) of (1.1), (1.2}, (1.4a), (1.4r), (1.4c) with
(1.17) 2, =8, 8 =1,

This solution may be described in a manner similar to the description given in Theorem I.
There are exactly (n + 1) numbers
= vee €
0 oo(e) < 01(6) ¢ vee ¢ °n~1( ) < on(E) =1
at which H(x,€) has its relative minima, i.e.,
(1.18a) H'(aj(e),e) =0, H"(oj(e).e) >0,

Moreover, between the Oj(C) the function H{(x,€) 1is essentially positive. That is, for

any given § > 0, 28 < °j¢1 -~ oj we have, for small €,
{1.18b) H(x,€) > 0, oj(e) +68 ¢ x ¢ oj”(e) -6 .
Fur thermore
. 2n ~i3
(1.19) tim(—————) =€ =g |T]7 .
0j+1(€) - aj(e) 3 0

The function G{x,€) has at least n nodal zeros; O < Yi(e) < YZ(C) < 0 < Yn(E) < 1,
Moreover
(1.20a) Y. (e} < a_(g) g, - Y, = 0{¢€) j = 1,2,e00,n .
j j v j j v J X7 '
If s # 0 and
sign 8 = (—1)“*1

then G(x,€) has (n + 1) zeros. The additional zero, YO(E) satisfies

(1.20b) 0 < Yyle) = ofe) .

Furthermore

(1.21) Ml o~ (e7%), Gt v (7%
-7-
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Remark: One can choose to characterize the solution (G,H) by the number of "humps" or by

the number of interior (nodal) zeros of G(x,€). Suppose we choose to discuss the number
of humps. If s # 0 let (E(x,c),i(x,C)) be the solution described in Theorem II with
n humps and
- 1 -
8 ."-0 € = |.|€ .
Then
~ 1 -
H(xle) - "I;Tu(1 - xlc) ’
G(x,€) = % G(1 - x,€)
is another solution of (1.1), (1.2), (1.4a), (1.4b) and (1.17). On the other hand, if one

chooses to look at the number of interior zeros of G(x,E) we have the following situation

Case 1: 8 > O, For every even n ? 2 there are at least two solutions (G,H), (E,i) of

(1.1), (1.2), (1.4a), (1.4b) and (1.17) with G(x,€),G(x,€) having exactly 7 interior
zeros and which also satisfy
H(x,€) > 0, H(x,€) > O, (essentially)
Let n=n and (G(x,€),H(x,€)) be the solution described in Theorem II. From (1.9) we
see that
9, > 0, gg > 0.

Hence G(x,€) has exactly n = n interior zeros. In addition, let n =h - 1 and
(G(x,€),H(x,€)) be the solution described in Theorem II. Then

9, <0, gg< O (essentially)

and E(x.e) has exactly n + 1 = n interior zeros.

Case 2: 8 < 0. For every odd n ? 3 there are at least two solutions (G,H),(E,ﬁ) of

(1.1), (1.2), (1.4a), (1.4b) and (1.17) with G(x,€),G(x,¢€) having exactly n interior
zeros and also satisfy
H(x,€) > 0, H(x,€) > 0, (essentially) .

If n =1 there ia at least one solution (G,H) of (1.1), (1.2), (1.4c), (1.4b), and

(1.7) with G(x,€) having exactly h = 1 interior zeros while

H(x,€) > 0 (essentially).

Let n =n and (G(x,£),H(x,E)) be the solution described in Theorem II. From (1.9) we

-8~
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see that

94 < 0, 90 ? 0.
Hence G(x,€) has exactly n = n interior zeros. If A > 1 let n =1 - 1 and let
(E(x,e),ﬁ(x,e)) be the solution described in Theorem II. Then

gy > Q, gq < [e]

and E(x,e)

Cage 3: s = 0. For every 0 2 1 (even or odd) tnere is at least one solution

{(G(x,€),H(x,€) with G(x,€) having exactly 0 interior zeros and
H(x,E) > 0 (essentially) .
Let n =n and let (G(x,€),H(x,€)) be the solution described in Theorem II.
The basic Theorem I is proven via a "shooting” argument. The basic estimates follow
from the following analysis. When H(x,€) is small, i.e.
2/3)

H(x,€) = O(€

then one studies the "stretched" problem: let

X-Xo

(1.22a) £ =2,
e1/3

(1.22) nE.e) = e 3ux,e), gi€,6) = e ¥ 3G(x, ) .

The functions (g,h) satisfy the equations

(1.23a) h*'' + hh" +12 /342 -12 )2 = we¥3 23,
(1.23b) g" + hg' - h'qgq =0 .,

With u = O(€), i.e., ¥ = O(1). We find that

(1.24a) h(£,e) » h(E) ; a quadratic function

of the form

- § 2
(1.24b) h(§) =3 (§ - EO) .

Purthermore
q(E,e) * g(&)

where g(f) satisfies

(1.25) g" +R§* -R'g=0.




L

The solutions of this problem are discussed in the Apbendix. On the other hand, when

H(x,€) is “"large", then the development in [8) shows that H,H',H*,H''!',G,G',G" can all

be estimated in terms of

G(x.e)
H(x'e)

Fortunately, we do not require that H{x,€) be too large. In fact,
Hix,€) > ke?/?
is sufficient. Hence the requirements of "“small" H(x,€) and "large" H(x,€) overlap and
we are able to give a complete analysis.
Realizing these facts one proceeds as follows.

Starting Procedure (See Thearem 3.2.)

For every choice of ﬁ,hz,n,qo there is a solution (g,h) of (1.23a), (1.23b) on the
interval [0,a] which also satisfies the boundary conditions

(1.26a) h{(0,€e) = h'(0,€) = O, h*(0,€e) = h, >0,

(1.26b) gwm)-gw gla,e) = h(a,€) .

The results of Section 3 show that this solution (G,H) of (1.1), (1.2) - originally

defined only on the interval [0,ue1/3) may be continued to entire interval (0,2% - §]

and, on this interval

(1.27) H(x,€) ® =2 (1 - cos ], Glx,€) = TH(x,e)
T

where 0 < T <1 and T *1 as a * », The results of Section 4 show that this solution

-

may in fact be continued to the larger interval 2'[1 + —%—] -8 where T is a negative
[ ]

number described in the Appendix. Furthermore, for small € we have

h
(1.28a) H,8) » =2 (1 - cos T x - 2m), 2w+ 8 <x <ot e 1] -5,
T R
)
(1.26b) Glx,€) = T M(x,€), 27+ 6 ¢ x < 2wf1 + ] - 5,
. 7l
(1.28¢) T, . Tt .

Thus we have exhibited 2 "humps". Proceeding in this way we construct a solution with

10~




n humps. let X, = xn(t) be the n'th relative minimum of H(x,€). In Section 5 we
employ an elementary degree theory argument to show that one may choose i,hz so that
H(xn,c) =0,
G(xn,t) = g,
provided that
)n+‘l .

sign g, = (-1

In this way we prove Theorem I.

-11-




2. Existence of Solutions Away from Turning Points

In this section we are concerned with solutions of the equations (1.1), (1.2)

(2.1) ey + HH' + GG =0,
(2.2) €G" + HG' - H'G =0 ,
with initial data
v v v v .
(2.3a) d H(xo)/dx = H,, vV =0,1,2,3, d G(xo)/dx =G,, V=01,
where
(2.3b) Hy > 0

In dealing with this case we use a basic estimate of Kreiss (lemma 2.1 of [7)) which we
include for the sake of completeness.
Lemma 2.1: Consider the differential equation
(2.4) € % +alx)y = F(x), a«<x<8,
where a, F are continuous functions with
a(x) >0

and € > 0 is a positive constant. The solutions of (2.4) satisfy the estimate

(2.5) ly(x)] € 1g/al + o(x,a)|y(a)}, a<€x.
a,x
Here
(2.6a) 1£1 2 max [£(v)]
FX aesx
1 X
(2.6b) 0(x,a) = exp{- r [ aterae} .
a

Proof: The solutions of (2.4) are given by

x t
yi(x) = y(a)o(x,a) + I exp{% ! a(s)ds} . ELél dat
a X

we rewrite this as

F(t)
a(t)

x t
yi{x) = y(a)a(x,a) + f d(exp{%-f a(s)ds}] .
a x

~12-
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For fixed x > @ the function

1 .t
exp{E-f a(s)ds}
x

is monotone increasing as t increases from a to x. The estimate (2.5) follows from

the mean value theorem.

Lemma 2.2: Let (G(x,€),H(x,€)) be a solution of (2.1), (2.2), (2.3a), (2.3b). Let

x
1
slx,xg) = exp{- 3 [ H(t,E)dt} .
X
0
Let
G"(XO,C) = G2 . '

Then, for x » x, we have

(2.7a} lG*(x,€)| € AG/H1 x ML s(x,x5) |G}
o 0 ‘
| {2.70) jem(x,€)] < |c;/mx0'x . nmxo'x + slxx ) |6,|
{ 1
1 ! - 1 L)
(2.7c) JB* v (x,e)] < IG/HIxO,x IG'IXOIX + s(x,%5) |Ha]

Proof: The estimates (2.7a), (2.7c) follow from Lemma 2.1 and equations (2.2), (2.1)
respectively. Differentiating (2.2) we have

(2.8) EG''' + HG" = H"G .

The estimate (2.7b) tollows from (2.8) and Lemma Z.1.
Lemma 2,3: Let G,H he a solution of the above problem in some interval Xq < x € Xy
with the tollowing properties

(2.9) MO NG/ €M Xy kg S min(I/mT)

<
"

Then there are constants K.. which depend only on dv' v=20,1,2,3; G

ij 0,1 and

M and not on € such that

1 -13-
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ldJG/delx x, < Kyj j = 0,1,

ol

(2.10)
J J - .
Id” H/dx lx ,x < sz, 3J 0,1,2,3 &

o'

Also
. " [4 - G* .

(2.11) 1G 'xo,x1 MK, + lczl, G, =G (xo,c)

Proof: For any solution of the above equations we may apply Lemma 2.2 and obtain the

Pty

estimates (2,7a), (2.7b}, (2.7c). Also, the Taylor expansion

x
H'(x) = Hy + (x = x5)H, + [ @« - xo)H"'(E)dE
X
[¢]

gives us
(2.12) 't < Hy |+ |x = xglH, + o (x - x ) 2mHred .
e % 1 ol™2 ~ 2 0 X i %
Therefore by (2.9) and (2.7)
2 1 2.2
el < Mot + M|G |+ |Hy| S5 (x, = x ) MM ] +
1 3
xo.x1 xo,x, 2 1 0 xo.x1

e W]+ g = x|, 1Y + i |+ ) .
By (2.9) (x, ~ xo)zn2 €1 and xy - %5 € 1. Therefore
lu"'lxo'xl < m2(|H, | + |Hy|) + 2mlG,| + 2{Hg) .
Thus we have proved the estimate for H''', By Taylor expansion (see (2.12)) we obtain the
estimates for H,H',H", and by (2.7a) and (2.7b) they follow alse for G,G',G".
We shall now use these estimates to derive existence theorems.
Theorem 2.3: Consider the initial value problem (2.1)-(2.3) and assume that
(2.13) Hy ? §>0.,
Then there is an interval Xg € x < Xy, %y = Xg > 0, independent of €, in which the

above problem has for all € with 0 ¢ € €1 a unique solution. Moreover the estimates

14~
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(2.10) of Lemma 2.3 are valid. The constants Kij depend only on Hv'v = 0,1,2,3;
G,V =0,1,2 and s,
Proof: Let € > O be fixed. From the general existence theory for ordinary differential
equations it follows that there is an interval x, <x < %, where the conditions of Lemma
2.3 are satisfied with M = 2(|Gy/Hy| + 1). We want to estimate x,. Taylor expansion
gives us
[H(x) = Hy| € (x = xg)Kyqs [GIX) = Gl € (x = xg)Kyq o
Therefore Hh(x) > % Hye IG(x)| € |Gyl + |Hg| and |H{x)/G(x)| €M for
0<€x - Xq < min(!/K,,,Ho/(2K21)) =Xy = Xg .
Thus the solution exists in this interval and the theorem is proven.
Now consider the limit process € * 0., We want to prove
Theorem 2,2: Assume that Gv’“v are functions of € with
(2.14a) lim H = H,Vv = 0,1,2, lim Go"_‘o' i-lo >8>0,
€*0 [34"]
Assume also that
(2.14b) Hy,G,,G, are uniformly bounded .
Let x5.x, be as Theorem 2.1. Then the solutions of the initial value problem (2.1)-(2.3)
converge on any interval Xg + § < x < x1, § > 0 to the solution of the reduced problem
(2.15a) HH''Y + GG' = O, dvﬁ/dxle’xo - i,
(2.15b) A - A'G =0, &(xg) =Gj

v=0,1,2,

Proof: (2.14) and (2.10) show that
EG" = 0(e) + 0 ,
Differentiating (2.1) we obtain for y = Hiv the equation
€Y' + Hy + H'H''' + (G')2 + GG" = 0,

Therefore by Lemma 2.1 and (2.14)

(2.16) jytx)| <

+ |ytxg) |s(x,xy) «

lH!H'IU + (G')z + GGnI
I
X X

H
0

By (2.14) EH"'(xo) is bounded. Therefore y(xo)s(x,xo) is hounded for x » x, + &,

_15-
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Theretore €y *+ 0 and the theorem tollows by standard compactness arguments, Tnis proves

the theorem,

It is easy to see tha*t the solution of (2.15) has the form

= - ﬁ1 i2
H(x) = Ho + = sinT(x =~ xo) + :5 (1 - cost(x - xo))

(2.17)
Gx) = TH(X), T = Go/hg .

Up till now we have only proved the convergence to G,H in the interval
xy € x € x,. However, we obtain immediately uniform convergence in any interval
Xo < x € §1 where ;(x) ® 0, ¢ any constant > O, This we can also express in another
way. Let X < xg < X be the first points to the left and right of Xy with
;(i) = g(i) = 0, Then we can prove existence of solutions (G,H) of {(2.1), (2,2) and
uniform convergence to (6,;) in any interval X < xg <x € xy < %. (of course, if we
move x, then we have to change the initial conditions to obtain the same <E,ﬁ>).

In (8] we proved that a necessary condition to obtain an order one solution of the

rotating disc problem is that H'(X) = H'(X) = 0 i.e. we can write (G,H) 1in the form

= 2 - - - - - 2%
(2.18) Hw— (1 - cost{x - x)), G=TH, x € x <x + .
T2 Itl

Hence, we shall seek such solutions.

i
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For later purposes we write the equation (2.1) in another form. We integrate (2.1)

and get
(2.19) €H''' + HH" +% 62 -u'? =u.
To obtain a limit solution of the form (2.18) it is necessary and sufficient that

Lim & = 0 because a simple calculation ghows that (3,R) satisfies the equation

>

i A" + 2 (82 - (R)%) =0,
For our purposes the right choice is
(2.20) MEN TN
Instead of H; we can give J as initial conaition and compute Hy from (2.19). 1In
partiogular Hy is bounded if
(2.21) HoHy + 3 (G3 - u3) = 0(€), ¥ bounded .

Finally we collect a number of tformulas which we will need later.

Lemma 2.4t We can write the equations (2.1), (2.2) in the form

1 x

- 'e"{ K{njan x - lef H(n)dn
(2.22) HOTH(R) = WYX De ° -%f e ¢ G(E)G' (E)ak ,

X
0
X
1 x
'?){ H(man . -/ nman
(2.23) Gl (x) = G'(x e 0 +%f e £ H'(E)G(E)AE ,
X
0
(2.24) G'(x) = (G(x)/H(x))H'(x) - &G"(x)/H(x) ,
(2.25) 3—x (G/H) = (HG' - GH')/H2 = -£G"(x)/H2(x) .
Also
v S x
-/ Hman -1/ windn

xo 1 X € E .

(2.26) G"(x) = 6" (x)e +t< [ e H" (E)G(6)dE
X
0

Proot: These equations follow directly trom (2.1), (2.2) and {(2.8).
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3., Exigtence of Solutions when HO is Small

We consider again the initial value problem (2.1)-(2.3) and write (2,2) in the

integrated form (2.13) with ; of the form (2.14)., Consider initial data of the form

2/3 1/3h

(3.1) Ho =€ hol H1 = € 1! H2 = h2l ﬁ' eal hV > 0, v= 0,1,2 ,
1
(3.2) Ggp = 82/390. Gy =¢ /391, 9, > 0, ve 0,1,

i,hv,g“ can be functions of € but we assume that
1,2
hh, =-<h
- 02 2 1 - 1 1/3 2
D'90191rh01h1,h2 and Hy = - 51/3 + U 2 € 9
are bounded independently of €, We assume also that
(3.3) Gy = hygg = hygy >0,

and is bounded independently of €. We want to prove
Theorem 3,1: There is an interval Xq € x < Xy Xy = Xg > 0 independent of €, in which

the above problem has a unique solution for all € with 0 < € € 1. Moreover

1 " 3
(3.4) 0« 2 H2 € H"(x) € 3 H2' X, <x € LI
.and the estimates (2.5) of Lemma 2.1 are valid. X3 — X and the constants Kij depend

only on Hv,v = 0,1,2,3;95/hy and G,V =0,1,2. Also

(3.5) €6"(x) = O(E),  H(X) > H_ + ¢ Hylx = x)? .

Proof: Let xy ¢ x € x, be the largest interval satisfying (3.4). Then (2.20), (3.2),
(3.3) and (3.4) imply that G"(x) ?» O. Therefore by (2.19)

lG/H'xO’x1 < GO/HO - go/ho =M,

Thus Lemma 2.1 shows that dvﬂ/dxv, vV=0,1,2,3 dvG/dxv, v=20,1,2 are bounded if (3.4)
holds and x, - xg € min(1/M,1). By Taylor expansion
L] - L] - e
[H"(x) = H"(xg)| € (x - x,) M4 Ix,xu .
Therefore, we can find Xy independent of €, such that (3.4) is valid. Then (3.5)

tollows froa Lemma 2.1 and the assumption that ho > 0, h1 > 0 and that G2 is bounded

independently of €. This proves the theorem.




R
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€ *+ 0, Assume that

/3
/ 9

Now we consider the limiting process

e2/3h0 + 0, 81/3h1 +0,n,»h, >0, €79 0, ¢

> >
2T M 1 T O gg/hy T > 0.

90'h0'91'h1 can be large. However, we assume that i,:1/3q3 are uniformly bounded

that
(3.6) = (gp/hhy = th_, h2 = 2nh, + 2673
. 9; = (9g/hylhy = /h, by oh2 P
where £ 2 0,p are also uniformly bounded. This assumption guarantees that we have bounds
for
- 1 .1/3 2
G, = £ 20 and Hy =p + U - E-E / 9, *

By Section 2 and Theorem 3.1 (G,H) converge in a neighbourhood of x, to a solution

(G,H) of the reduced equation. (G,A) is of the form (2.12) with X = Xgs We want to

derive a relation between T and T, By (2.19) and (3.5)

G(x1) G(xo) X e (x)
Ay Ay T ¢ ]
1 [ X H (x)
with
x
1, x
€ f E? dx € const. € ] i dx 573
X, H Xy (H0 + z-Hz(x - xo) )
° d: €
€ X const.
- const. ~3 J ’ 73 ¢ const 573 =TS
H x X - X H h
[0 V] [‘ + 1 ( 0) ) 0 V]
a2
0
i.e.
G(x, ) G(x_ ) g
1 0 1 [¥] 1
(3.7) e T ATt ° 3/2] =+ 0(—373] .
1 0 h 0 n
0 o]
Now let € + 0 then Gixy)/H(x;} *+ T and therefore
(3.8) T = gy/hg + 0(1/h3/%) = T, + oti/md/?) .

We consiader now a two-point boundary value problem for the equations (2.,1), (2.13) in

an interval




0<x<x0=ac‘/3, a = consts > O «

The boundary conditions are

. 2/3
(3.9) H(V) = H'(0) = O, H*(u) = hy > Uy G{0) = € / 9g° G(xo) - 11u(x0), T, 0.
we want to prove
(2.13), (3.9) has a solution with the

Theorem 3.2: The boundary value problem (2.2),
35

following properties. G,G’,G",H,H',N",H"' can be estimated hy nz, 1’, 90 and

Also, G'(xu) > 0, G"(xo) > 0 provided @ is biq enough.
proof: Introduce new variaples by
x-€1/3;, Gse”}g, H‘€2/3h.

Then the above equations become

.;‘- + hh *_;_ (52/392 _ hZ) - £1/3:‘
{3.10) . .
g + hg - gh = o,
(3.11) n(0) = h(0) = 0, h‘U) = hy, g(0) = doo gta) = T.hia) .

we can solve the reduced equations

b 24 . . . .
(3.12) h o+ R - Lh2 =0, no) =h0) =0, (O} =Pz
(3.13) oK -ak =0, §(0) =g 9la)= T ho) .

The solution of (3.10) is

1 ~2
(3.14) A= 2 hzx .
introducing this expression into (3.13) and the boundary conditions gives us
« by (o2 .~ - -
(3.15) g +5x g - hzxq =0, 3o} = g, g(a) = 'l"h(u) .

¥y the Appendix the general solution of the differential equation (3.15) is of the

form

- 1,413 1 3, (A eV
(3.16) g = \1”1((2 h,) x) + 2= h2] q’z((2 h,) %) »

where \P‘(t) aecays exponentially for t ** w‘(o) +# 0 and

v (t) w'z(t) en(t)
lim =1, lunT-‘l, lim === = 1 .
t" t tw ~
x”

Theretore, Lf @ 1S sutficiently large, then
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g, - 11[-;. hz]’”wz(m

o1 A~ 1 A~
317 2T M .10
and
(3.18) é >0, >0, g/Rh ~ 1 for all sufficiently large x .

1

By a standard perturbation arqument it follows tnat the tull system (3.8), (3.9) has a

solution with

v ~ V=~V v ~Vv V= NV 1/3
(3.19) 10%g/ax’ - a¥e/ax’t_  + 43 hsax’ - a%hzax’i < ce'/3, v=o,1,2.
g,a 0,a v
Also h = 0 implies
vee 1/3
. ] [] < € .
(3.2V) h 0,a C3

We return now to the original variables. By (3.17)

SRV

x2 4 O(€e), H'(x) = h,x + 0(82/3), H" (x) + 0(61/3), H'''(x) = h /€ .

2 h

hix) =

Nlu?

2
(3.21)

G = 52/35 + 0(g), G' = 51/35 +oe¥3), o = g + o(e'/3)

-

This proves the theorem.

1/3

Assume now that a, h,, g,, T. and W are tixed and let € % 0. At xg = Q€ the

1
conditions ot Theorem 3.} are satisfied. Thus (G,H) can be continued and converges to a
solution (&,R) of the reduced equation (2.12). Here

(3.22) h, = #"(0) = H,

uz + O(e) a.e.

. 1
and T,T1 satisfy the relation (3.8) with h0 =3

(3.23) T=T, 4 0(1/a3) + 0(€) .

We summarlize the result in
Theorem 3.3: Consider the two-point boundary value problem (2.1), (2.13), (3.9). Assume
that h2, 9gr tl and ¥ are fixed and a sufficiently large let € * 0, Then {(G,H)
converges unitormly in any interval 0 € x € x; < X to a solution <(G,A) of the reduced

equation (2.12) with T and H satisfying the relations (3.22) and {(3.23) respectively.

2
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4. Existence of Solutions Through a Turning Point

In the previous sections we have shown that we can construct a solution of (2.1),
(2.2) for 0 = x € x € Xy < X = T%% which for € + 0 converges to a solution of the
reduced equations (2,12). For simplicity we assume that T > O otherwise we change G
to =-G. Also, x; can be arbitrarily close to X. wWe shall now show that the solutions
of (2.1), (2.2) can be continued through the turning point X, Let x, < X be a point
near X where

Hix,) > 0, H'{x,) < O, H"{x{) ~ B, > 0, G(x,) > 0, G'{x;) < 0, G"(xy) >0
for all sufficiently small €., We want to show
Lemma 4.1. Consider (2.1) in the form {2.13) and assume that ; is given by (2.,14). For
sufficiently small € there is a point Xy > Xy with
2/3 Ay € H"(xy) =~ hy <28, ,

' - V3 3
h. >0, H (xz) € h1 < 0, 7 Hy

0
1/3
9, >0, G'(x;) = € 9, < 0.

H{x,) = €

(4.1
Glxy) = €2/3

Here h0 > 0 is a sufficiently large constant and h,,go,g1 are constants which depend
only on h, and not on €. Also

(4.2) H{x) > 0, H'(x) < 0, G(x) » 0, G'(x) <0, G"(x) >0

and H'''(x) is uniformly bounded and can be estimated independently of 4 in the whole
interval x4 € x € Xoe

Proof: There are two possibilities.

1) H(x) > /3

h0 for all x » x,. We want to show that there must be a point Xg
where H(x) has a minimum. Let xy < x < x4 be an interval where G(x) » 0, H"(x) 2 O.

Then by (2.20) also G"{(x) > 0 and (2.19) gives us

G(x, ) X G(x,)
G{x) 1 G" 1
. € - B e = € —_ € e — < < .
(4.3) A T e i T2 L
1
Thus by Lemma 2.1 H'''(x),G"(x) are uniformly bounded. Therefore, choosing Xy

sufficiently close to X and Xy = X sufficiently small quarantees

i - 3=
(4.4) 3 "2 < H"(x) € 3 Hz, x, < x < Xy

Also, in the same way as in Section 3




X gn * dx
e[ = dx € const, € [ < const. h53/2

1 2
%, H X, (H(x4) t3 Hz(x - x4))

i.e., for sufficiently large h,

G(x1) Gx) G(x1)

1 .
(4.5) 2 Wx,) CHGo Ay e Sx1 >0

Therefore we can find always an interval X, € x € xy with the above properties whose
length Xy = Xy does not depend on € and Xqe Choosing x, sufficiently near to X
makes H'(x,) as small as we like because H,H' converge to H,f'. Therefore (4.4)
implies that there must be a point x3 € (x;,x,) with H'(x3) = 0, At this minimum (2.13)
gives us

12 -
(4.6) HH" +3 G = €Ep - €H''' .
For sufficiently small € and X - X, (4.5) and (2.6c) show that H''' is bounded.

Therefore h(x3) = 0(€) which is a contradiction.

2). There is a point x, with H(xz) = 52/3h0 and H'(x) < 0 for x; €x € Xqe
Using (4.3) we find again that G"(x) > 0 and that (4.4) and (4.5) hold for

x; € x € x5. In particular G(x,) = Ez/sgo. Also, by (2.13),

[u* (x,)| = YR ¥ 0Ce) = ote'/3) .
Therefore by (2.18)
0 < -G"(xy) = 0(:1/3) .
By Lemma 2.1 the bound on H''®' depends only on the bound for G/H which is independent
ot H. Therefore H''' can be estimated independently of . This proves the lemma.
Now we can proceed as in Section 3. For x ? Xy we introduce new variables

~

hx) = Kx)/e??, ax) = 6x1ze?’?, x - xy = €%, X520,

Then we obtain the equations (3.8)
‘h" 4 hh o+ % (¢2/392 -n2) = e'V/3
(4.7)

g + né -gh =0

with boundary conditions

~23-

e S b




e

e ——————— ————

(4.8) h(0) = hy, h(0) = Ny, h(0) = hy, g(0) = g5, g(0) =g, . '
Also
e /3.4 /3 ey i ; T .
(4.9) h (0) = ¢ H '(xz) = O(€ ), H (‘2) is bounded independently of M ,
and
9o/hg = T, = Glx,)/H(x,} + O(I/hg/z) = T + 0(€ + h63/2)
(4.10)

g, = t‘h1 + 0(1/h0) - th‘ + O(e + l/ho) .

(4.9) and (4.7) show that

(4.11) 2nghy - b3 = 0(e?), iie. ny = - AR 4ot

and the uniform boundedness of H'‘'(x) for x, € x € Xy shows that

(4.12) lim h, = H, .
€+0
We can solve the reduced problem
vee . s .
—-— 1 .
(4.13) h +hh -3n?=0, h(0)=hy h(0)=hy, hni0)=h,
(4.14) g+hg-gh=0, 3O =a, gl0O)=gq, .

By (4.11) the solution of (4.13) is in any finite interval O ¢ x ¢ ;4 of the form .

= _r s s 2 1/3
(4.15) h 2 h2(x x3) + 0(¢ )
where ;3 is determined by *
2h
] 1/3 , s _ /5 1/3
hy = 2 hzx3 + 0(€ )y iees X, -E; + O(e ) W
Replacing ; in (4.14) by % h2{; - ;3)2 and introducing a new variable
1/3
1 - -
£ = (E-hz) (x - x5)
gives us
2= 2 2= = 1 Y3, " Ve 1/3
(4.16)  a%9/dE” + £%ag/dE - 269 = 0, £ 2 & = -(7n,) x, = - +0(e’")
2 3 1 1/
'2'“2)

with boundary conditions

-1/3 ‘
(4.17) S(6) =g, d3(E)/aE=(+h) g .

0 o' 0 2 2 1

By (4.10) and (4,11) ﬂ
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Lemma 4.2: For € sufticiently small H'''(x) can be estimated independently ot

1/3

1 1 -3/2
a—==(+n) =(3n,) t+on +€),
- = h, 2 o

v 2 'z 2 hy = 2

(d.18)

- 1,73 Ly
a§l&ylrat (5n) g RPRVERN i LA
FIIN /—-‘To— 2n h,

-2

+ 0(61/3)

1/3
- %-hz) v +omg¥2 €3,

Thus by the Appendix

. 1/3 }
56 = (30,) 1,8 + 0?4 €3

where ql(ﬁ) is monotone decayiny with

g,(&) g, (%) . .
lim-2—=l, g,(0) < 0, lim—z—--|1| =T,
4= (2SN 3

For the original equations (4.7) a standard perturbation analysis gives us in any finite

~ ~
interval O § x ¢ xq,

1
2

N ~ o~ 2 1/3
hix) = hz(x - x3) + O(e )

(4.19)
x) = (Ln )1/31 (X n ]V3%x - x0) + on232 4 V3
9ix) = {3 My 9z hy 3 0 .

~
‘Thus we can shoot through the turning point. In particular, we can choose x

4 % large

that the conditions of Theorem 3.1 are satisfied. Furthermore
> > > -3/2 173
= e .
g(xd)/h(x4) 1T + u(h0 + )

Thus we can continue the solution ot our problem to the next turning point

1
Ev G
2 (t +

Xan

7—) where we can repeat the process.
7|
In the next section we need

.
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Away from the turning points this is clear because by Lemma 2.1 a bound for

Proof:
H'''(x) depends only on a bound for G/H ~ t. To eastimate H''®' for O € x € §4 we can
neglect the term €2/3qz in (4.7). Differentiating gives us
x
- | n(&)dg
LE RN ] LE RS b - 0 o0
h +hh =0, h(x) =e h (0) .

We know that h (0)/&:‘/3 is bounded independently of i and therefore the same is true

for h (x) because h(£) » -o(e'/>

). This proves the lemma.

w




5. Existence of Solutions

Let n 2 1,999 be given with
sign g, = (-1)" .
Let
> n=1

(5.1) T= |71
where I 1s the constant given in (A.6). Let

3
(5.2a) h, = |(q1/l1001¢11(0)1) ]
where g,(x) is the function described by (A.1) with 6§ =1 and (A.2a). Let
(5.2b) hy = [(2009, /119, (013 + 1 .
Let @ be the bound on |H'''(x)| determined in Lemma 4.2. Let
(5.3} B=9Q+ 1.,

For the remainder of this section we require that

(5.4a) 4| < 8, i.e. |u| < B¢, =,
(5.4p) 22 < h2 < h2 .

Let (G(x,t;ﬁ,hz),H(x,e;ﬁ,hz)) be the solution of (2.1), (2.2) which arise from the
pair (g(E,e;i,hz),h(E,tsﬁ,hz)) which satisfy the boundary value problem (3.8), (3.9).
The constant @ is fixed with a >> 1.

By the arguments developed in the previous sections we obtain the following results.

Theorem b.1: Let n 2 1 be a fixed integer. If a is chosen large enough and € small

then (G(x,E;i,hZ),H(x,c;ﬁ,hz)) exist on an interval {0,Bl whose length B is of order
1. The function G(x,c;ﬁ,hz) has at least n zeros

(5.5a) 0 <Xy <Xy < x, <B.,

The function H(x:e;ﬁ,hz) has at least n relative minima

(5.5b) 0 <y <y, < s <y <B.,

If gy < 0 then G(x,C;u.hz) has another zero Xg with 0 < x5 < Xy« These numbers

satisty

(5.6a) 0 < xj - Yy €o(1) as € *+ 0, J = 1,2,00e,n,
(S.6b) X, = 2% + o{3) ,

(5.6¢) Xieg ~ %2 = 2073 4 0), 3= 1,2,0000n .




e v e e ———— o Vo s

Also

(5.6d) H"(x_,€,0,h,) = hy + 0(1) .

On the interior of the interval (xj-1'xj). j = 1,2,00e,n we have

h .

I _— - 33 -
(5.7a) H(x,e;u,hz) l;lz‘j-') [1 - cos|Tt| (x xj_,)) + 0o(1)
while
(5.7b) GUx, €1iish,) = (?)3“u(x,e,§,h2> +0(1) .
It ; = B€ then
(5.8a) H(xn,ezﬁ,hz) >0,
and, if p = -f€ then
(S.8b) H(xn,e;-ﬁ,hz) <0 .
It h2 = h2, then

= 1= 13 5 nea 2/3 2/3 2/3
(5.92) Gtx ,&,u,50,) = [(5 5, 171" g,100 Je¥? + 0(e¥?) > 9,67 .
Similarly, if h, = h,, then

1 \Y3 2/3 2/3, =~ 273

(5.9b) G(x_,€,u/h)) = [(3 '-'2) 1117 9,000 [e%7 4 0(e¥7) < 3, e .

Corollary: There is a choice of U,h, which satisfy (5.4a), (5.4b) and

2
(5.10a) H(xn,tti,hz) =0

- 2/3
Glx s eilhy) = g &3,

Proof: Let € > 0 be so small that Theorem 5.1 holids. Consider the mapping

(5.11a) <§,h2) > <c(xn,e,i,h2),u(xn,c,i,hz)) .
with

. ul < €h. €h_ .
(5.11p) |uj < 8, h) €h, <h,

Since H'(xn,e,i;hz) ® hy > 0 the implicit function theorem shows that x. defined by

n
the n'th min:
H'(xn,c:i,hz) =0

is a contanuous function of (i,nz). Thus, the mapping (5.11a), (5.11b) is a continuous

napping,




The properties (5.5a), (5.5b), (5.6a), (5.0b) together with an elementary "degree"

theory argument see [20] shows that there is a solution of (5.7a),

consider the homotropy

(5.7b).

To see this we

h. - n
- 3 M2 " P a3 -
G (x ,€:0,h,) = tg [2 - 3 (——}_1 )3 + (1 - £)G(x_,€l,h,), 0 <t <1,

2 =2

Ht(xn,e;i,hz) =tu+ (1 - t)H(xn.e;i.hz),

As t varies from 0O to 1 the inequalities (5.5a), (5.5b), (5.6a),

0 <

t <1,

(5.6b) continue to

hold. Thus, throughout the homotropy, there is no solution on the boundary of the region

described by (5.11b)e For t = 1 the equations read

R, - h
(5.12a) (2-3(Z2—2)g, =g .
hy = h,
' (5.12b) w=0.

There is a unique solution,

1 - 2 -
h2—3h2+-§£2, =0,

Thus, there is a solution hz(c),i(t) for every t € (0,1]. In particular, there is a

solution for t = 1 and our problem has a solution (see [20]).

This corollary implies the truth of Theorem I, Theorem II and Theorem III follow as

indicated in the Introduction.
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Appendix
In this Appendix we are concerned with the equation

(A.1) q" + zeq' ~20xg =0, 6>0.

In fact, we need only consider the case & = 1, For, if a(x;1) 1is a solution of
(As1) = with 6 = 1 - then, for any & > 0, a direct calculation shows that the function

Y(x;8) = q(51/3x,1)

is a solution of (A.1) with this value of §.

Our first concern is with the asymptotic hehavior of solutions q(§)(= g(£,1)) as
£+ =

A simple calculation using the Liouville-Green (or WKBJ) approximation (see chapter 6

of [14)) leads to the following results.

Case 1: As x * - cthere are two linearly independent solutions q1(x).uz(x) and

(A.22) g (x) ~ %2, x>,
-4 3
(AeBD) aylx) ~ xexp[- 5],  x+ =

Thus, there is a unique function, a, (E), which satisfies (A.1) with § = 1 and
(A.3) qx)/x2+ 1, x v -,
Purthermore, a more careful asymptotic expansion of g,(x)}, e.q., using the methods

described in (2%, pp. 52-61) yields,

(A.4a) g x) ~ x2(1 4 %), x> -,

(A ®) gix) ~ (1 + %A1 - 1ixt), x -,
and

(A.4c) aj(x) ~ 2, x* .=,

Case 2: The same calculations show that: as x * +* there are two linearly independent

functions ¢ (x),wz(x) which satisfy (A.1), with 8 = 1, and

3
(A.5a) wqylx) ~ x"exp[- x_3]’ x + 4m,
(A.5b) ?qix) ~ xz. X v,

Since the function q,(x) which is characterized by (A.3) can be written as a linear
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combination of v,(x) and wz(x) we see that there is a unique constant, call it ;,
such that
(A.6) Lim g (x)/x? = T .

xX>4o
Lemma A.1: Let ¢,(x) be the solution of (R.1) - with § = 1 - described by (A.5a). Then
(A.7) v(0) #0 .
Proof: suppose (A.7) is false., Then

A = v1(0) #0.

Suppose A > 0. An easy argument based on the maximum principle - or based on the

identity
d x3 x3
— ) — = —
2 lojexpl25]) = 2xo exp[25]
shows that
(A.8a) ¢{(x) > 0, 0 € x <<=,
(R.8b) v,(x) > 0, 0<x <=,

The identity
d x3 x3
— " — = —
(R.9) ax [¢1exp[ 3]} 2¢1exp[ 3]

and the fact

vj(0) =0
implies that
pi(x) 20, 0<x¢™,
Thus
¢ (x) > Ax

which contradicts (A.5a). If A < 0 we apply the above argument to -¢1(x).
We now turn to a more detailed discussion of the function g,(x).

Theorem A: Let g,(x) be the function which satisfies (A.1) - with § =1 - and (A.3).

Then
(A.10a) q{(x) < 0, -® (X < ™,
(A.10b) xq? <0, -0 X <™,

Let g uenote the unique point at which q,(x) vanishes, i.e.,
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(A.112) 9,(§) = 0. ,
Then
(As11b) "3 <5<o. )

Finally, the number T of (A.,6) satisfies
(A.12) T< 0,
Proof: For negative values x << - R < 0 we have
a,(x) >0, ajix) <O, x << =R < 0 .

Since q,(x) satisfies (A.1), g,(x) cannot have a positive relative minimum on the
interval (-~,0)s Thus, either
(R.13) a,(x) > 0, ~®<¢x <0,
or there is a first point § < 0 at which (A.11a) holds. Suppose (A.13) holds. Then
{A.9) shows that

q';(x)>0, -® ¢ x <0,

Let x, << -1 and x, < x ¢ 0. Then .

x

(A.14) 0 < q1lx)/x2 = q1lx1)/xf - f [q;(t)]/t‘dt < q,(x,)/x? .
x
1

Let x, * =, Then

0 < q,(x)/x2 < lim q,(x,)/xf =1,

X *-=
Thus, if (A.13) holds,
o<q1(x)<x2, -® ¢ x<0.
Rut then
9,(0) = q3(0) = O
and

a,(x) £ 0.
Since this is impossible, there is a first point g ¢ 0 at which (A,11a) holds. Moreover
(A.15a) aj(x) < o, -*<¢xCHcO,

(A.15b) ajix) > o, 2 ¢x€gc¢co0.
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: we now estimate g§ from below. We have
| g1 (@ = 29,3 - §%95@ <0 .

Let x, < g be any point such that

i
!
i (A.16) gj''(x) <o, x, $x €3,
f Then

: 0 < gj(g) € gj(x) < gyix,), X, $x €3O0

Returning to (A.14) we have

9
9,(3)/3% = 0 = g, (x,)/x% - [ lg(t)/ed1ae .
X

1

That is _ -
2_ 4 S
0 < gytxd/xd = [0 oagyeer/etiae < giixg) [ Li/efiae
X X
1 1
' Thus
(Aa17) 0 < 2 < g1 3|3 31 < qn 313
. gq\x)/x5 € [gy(xy)/31001/71T]%) = (/)% 121 < g7(x,)/(3]§]°)

Let x; * -®, under the condition that (A.16) hold. Either x;, * i1 a finite point at which

9{.'(§1’ =0

or x, * -®, In either case

2g1(x1)/x$ *qi(¥X,) .

Thus, (A.17) yields

0 < |g)3 <23,

Thus we have proven that (A.11b) holds for the "first" zero of g,(x).

Our next task is to extend the range of the inequalities (A.15a), (A.15b) to the
larger interval (-%,0).

Let 6 =1 and let Y1(x),Y2(x) be the special solutions of (A.1) which also satisty
(A.18a) Y, (0} =0, Yi(o) = -1, !
(A.18b) YZ(O) = -1, Yé(O) =0 .

’ Let r; and r, be the smallest (in absolute value) negative zeros of Y1(x) and

Yz(x) respectively, It 1S an easy matter to obtain intinite series solutions tor




m—

o —————. v em o

Y,(x).thx) and see that
eyl > 1, feal > 1.

These estimates, together with (A.11b) and the oscillation theorems (see {16, page 42])

show that
g,(x) <0, g<x <0,
Thus
(R.19) g,(0) < 0.
Let

gy{x) = d, 5 {x) + szz(x) .

Since g,(3d) = 0 and Y,(3) > 0, ¥,(g) < O we see that d, and d, are ot the same

sign. But (A.19) gives
dy(-1) = g,(0) < 0.

Thus,
> 0, d2 >0,

and
q{(o) = -d, < 0.

But, (A.1) implies that g1(x) cannot have a negative relative maximum in the interval

(g,0). since gj(3) < 0 and g}(0) < 0 we see that

gi(x) < 0, g $x<0.

On this interval we have
g7 = 2xg, ~ ngi >0, g<x <0,

Hence, we have the inequalities (A.10a) and (A.10b) on the interval (-=,0). The

completion of the proof now follows from the initial conditions q,(O),q{(O), the maximum

principle and the identity (A.9).

Remark: Since the theorem holds the quantities g and I can be determined - to any

desired accuracy - by numerical computations. Results of Jerry Browning of NCAR indicate

that
T~-2,

g > =91 .,
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